Search results

1 – 1 of 1
Article
Publication date: 24 September 2019

Mohamed I.A. Othman and Sudip Mondal

The purpose of this paper is to introduce the phase-lag models (Lord-Shulman, dual-phase-lag and three-phase-lag) to study the effect of memory-dependent derivative and the…

Abstract

Purpose

The purpose of this paper is to introduce the phase-lag models (Lord-Shulman, dual-phase-lag and three-phase-lag) to study the effect of memory-dependent derivative and the influence of thermal loading due to laser pulse on the wave propagation of generalized micropolar thermoelasticity. The bounding plane surface is heated by a non-Gaussian laser beam with a pulse duration of 10 nanoseconds.

Design/methodology/approach

The normal mode analysis technique is used to obtain the exact expressions for the displacement components, the force stresses, the temperature, the couple stresses and the micro-rotation. Comparisons are made with the results predicted by three theories of the authors’ interest. Excellent predictive capability is demonstrated at a different time also.

Findings

The effect of memory-dependent derivative and the heat laser pulse on the displacement, the temperature distribution, the components of stress, the couple stress and the microrotation vector have been depicted graphically.

Research limitations/implications

Some particular cases are also deduced from the present investigation.

Originality/value

The numerical results are presented graphically and are compared with different three theories for both in the presence and absence of memory-dependent effect and with the results predicted under three theories for two different values of the time.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 30 no. 3
Type: Research Article
ISSN: 0961-5539

Keywords

1 – 1 of 1